

GSHD 系列高性能伺服驱动器 快速入门手册

VERSION: V1.1

版权

固高伺创驱动技术 (深圳)有限公司保留所有权力

- ●固高伺创驱动技术(深圳)有限公司(以下简称固高伺创)保留在不事先通知的情况下,修改本手 册中的产品和产品规格等文件的权力。
- ●固高伺创不承担由于使用本手册或本产品不当,所造成直接的、间接的、特殊的、附带的或相应产 生的损失或责任。
- ●固高伺创具有本产品及其软件的专利权、版权和其它知识产权。未经授权,不得直接或者间接地复制、制造、加工、使用本产品及其相关部分。

联系我们

固高伺创驱动技术(深圳)有限公司

- 地 址:深圳市南山区高新科技园南区粤兴一道9号香港科技大学深圳产学研大楼5楼
- 电话: 0755-26977857
- 传 真: 0755-26970843
- 电子邮件: support@googolservo.com

版本变更说明

版本	更新日期	更新日志
V1.0	2019年09月26日	第一版
V1.1	2019年11月04日	升级

1 í	简介	5
1. ⁻	1 准备	6
	111 准冬丁目	6
	1.1.1 催宙工兴····································	
	113 程序安装	
		_
1.2	2 产品规格	7
1. 3	3 驱动器的尺寸与安装	
2	系统布线及接口定义	9
2. <i>′</i>	1 驱动系统布线	
2.2	2 接口定义	– 12 –
	2.2.1 P1-STO 安全力矩保护	12 -
	2.2.2 P2-电机 UVW 接口	12 -
	2.2.3 再生电阻接口	13 -
	2.2.4 输入电源接口	13 -
	2.2.5 C2-控制器 Ю □	14 -
	2.2.6 C3-设备 IO 口	17 -
	2.2.7 C4-编码器反馈接口	18 -
	2.2.8 gLink-II 通讯接口	19 -
	2.2.9 C8-菊花链接口	19 -
	2.2.10 驱动器地址设定	20 -
3 /	伺服调试	21
3 1	1 软件安装	- 22 -
0.1		
3. 2	2 上电	23 -
3. 3	3 调试步骤	24 -
	3.3.1 连接	24 -
	3.3.2 查询驱动器版本信息	25 -
	3.3.3 电机参数设置	25 -
	3.3.4 驱动调试	25 -
3. 4	4 控制模式设定	24 –
	3.4.1 GLink2 总线位置模式设定	24 -
	3.4.2 位置脉冲模式设定	25 -
	3.4.3 模拟量速度模式设定	25 -
3. 5	5 固件升级	24 -
4	故障分析	41

4.	1	故障诊断与处理	- 42	_
5	附件	±		48
5.	1	附录-再生电阻选型	- 42	_

1.1 准备

1.1.1 准备工具

驱动器通过 gLink2 通讯连接至主机时, 需要以下连接件:

● RJ45 标准网线;

1.1.2 硬件要求

- 2 GHz CPU 或以上;
- 屏幕分辨率: 1280*800
- 内存: 1GB 或以上;
- 1000 MB 硬盘空间;
- 普通网线接口
- 操作系统: Windows 7;
- SDT 用于配置和测试驱动器的图形软件界面;

1.1.3 程序安装

按以下步骤安装和设置伺服驱动器系统:

- 1. 安装GSHD。使用伺服驱动器背面的支架,将驱动器安装在接地的导电金属板上。
- 2. 完成所有电气连接:
 - 控制器I/0s 和/或机械I/0s
 - 电机及编码器
 - 安全转矩关断(ST0),或使用跳线连接
 - 电机抱闸(若需要)
 - 再生电阻(若需要)
 - 交流电压输入
- 3. 用旋转开关设定驱动器地址。
- 4. 连接驱动器到PC。
- 5. 驱动器和PC 上电。
- 6. 连接至现场总线设备(可选)。
- 7. 安装 SDT 软件,并使用SDT, 配置和测试驱动器。

1.2 产品规格

1.3 驱动器的尺寸与安装

中压 GSHD-003 系列

中压 GSHD-4D5/GSHD-006 系列

中压 GSHD-020/GSHD-024 系列

系统布线及接口定义

2

2.1 驱动系统布线

伺服系统框图

2.2 接口定义

2.2.1 P1-STO 安全力矩保护

警告!

驱动非水平安装的负载时,系统必须有外部机械安全模块,例如电机的机械抱闸。当STO功能激活时,驱动器无法保持负载的位置。此种情况可能引发严重的员伤害或设备损坏,必须避免此类情况发生。

安全力矩保护是安全转矩切断(STO)是一种安全功能,可以防止驱动器传输能量给电机产生扭矩。STO使能和STO地,必须连接到GSHD的使能操作,使能电压必须是24VDC,连接STO接口。 注意:

若实际应用不要求STO控制,则将跳线引脚4连接至引脚1,引脚3连接至引脚2,以跳过STO,驱动出厂默认是跳过STO功能的。

接线定义如图2.2.1所示:

	5	
Features	Pin label	Pin
STO enable	24V DC	1
STO-	GND	2
24V-, driver provided for emergency stop circuit		3
24V+, driver provided for emergency stop circuit		4

2.2.2 P2-电机 UVW 接口

中压(120/240 VAC)GSHD驱动器的电机相线接口通常为 P2,仅GSHD-020/024的电机相线接口为P4。 电机相线接口如下图所示:

Features	Label	Pin	P2
ground	PE	1	
U phase	U	2	 V
V phase	V	3	/ w
W phase	W	4	

图2.2.2 电机相线接口定义

2.2.3 再生电阻接口

所有120/240 VAC GSHD型号的再生电阻接口均为 P3。

例外: GSHD-020/024的再生电阻接口为P5。

注意: 中压型GSHD-1D5 和GSHD-003的再生电阻接口与交流电源输入接口共用一个连接器。

若实际应用需要再生电阻,请将电阻连接在端子 B1+ 和 B2 之间。

GSHD-006

图 2.2.3 制动电阻接口定义

2.2.4 输入电源接口

不同型号的中压型 GSHD 驱动器,交流电源输入接口及其适配连接器会有所不同,详见表 2.2.4: 表 2.2.4 型号与供电端口对应表

驱动器型号	功率供电端口	功率供电信号	控制供电端口	控制供电信号
GSHD-003	Р3	L1, L2	Р3	L1C, L2C
GSHD-006	P4	L1, L2, L3	P4	L1C, L2C
GSHD-013/008/010	P4	L1, L2, L3	Р5	L1C, L2C
GSHD-020/024	Р3	L1, L2, L3	P2	L1C, L2C

注意:

L1C、L2C为控制部分供电,均使用单相 AC120/240V供电,L1、L2、L3为功率部分供电,建议使用三相 AC120/240V 供电,也可以单相 AC120/240V 供电,使用 L1、L2、L3 中的任意两相即可。

Features	Label	Pin
AC Phase 1	L1	1
AC Phase 2	L2	2
AC Phase 3	L3	3
Logic AC Phase 1	L1C	4
Logic AC Neutral	L2C	5

连接交流电源输入的地线到 GSHD 前面板的 PE 端子,使用 🧹 M4 环形或叉形接头

图 2.2.4 输入电源接口定义

警告!务必确保主电源额定电压与驱动器的规格相匹配。电压不正确可能导致驱动器损坏。

在确认全部硬件连接完成前,请不要接通电源。

2.2.5 C2-控制器 IO 口

- 所有 GSHD 型号的 C2 均为控制器 I/O 接口,可按照应用的要求配置输入和输出数字/模拟量。 不使用的引脚不应有任何接线。
- 为了保持数字 I / 0 的隔离,应连接 24 VDC 电源到引脚 19。连接 24 VDC 电源地线到引脚 1,形成电源回路。
- 可连接 C2 或 C3 接口上的任意一组 24 伏正极、24 伏负极,不必同时接入两组 24 伏电源。

图 2.2.5 C2-控制器 I/O 外观及引脚序号

引 脚	功能	说明	引脚	功能	说明
1	24 伏负极	外部 24 伏电源负极	19	24 伏正极	外部 24 伏电源正极
2	数字输出 1	光隔可编程数字输出,用 OUT 1 读取	20	数字输入2	光隔可编程数字输入,用 IN 2 读取
3	数字输入 1	光隔可编程数字输入,用 IN 1 读取	21		保留
4	等效编码器输出 A-	等效编码器差分输出信号 A-	22	等效编码器输出 A+	等效编码器差分输出信号 A+
5	等效编码器输出 B -	等效编码器差分输出信号 B-	23	等效编码器输出 B+	等效编码器差分输出信号 B+
6	等效编码器输出 Z-	等效编码器差分输出信号 Z-	24	等效编码器输出 Z+	等效编码器差分输出信号 Z+
7		保留	25	数字地	数字地
8	模拟量输入 1+	模拟量指令差分输入正端(±10 VDC)	26	模拟量输入 1-	模拟量指令差分输入负端(±10 VDC)
9	方向输入+	方向信号差分输入的正端 或负脉冲差分输入的正端	27	方向输入-	方向信号差分输入的负端 或负脉冲差分输入的负端
10	数字地	数字地	28	脉冲输入+	脉冲信号差分输入的正端 或 AB 脉冲的信号 A+ 或正脉冲差分输入的正端
11	脉冲输入-	脉冲信号差分输入的负端 或 AB 脉冲的信号 A-	29	数字地	数字地

		或正脉冲差分输入的负端			
12		保留	30		保留
13	数字地	数字地	31	数字量输入3	光隔可编程数字输入,用 IN 3读取
14	数字量输入4	光隔可编程数字输入,用 IN 4 读取	32	数字量输入5	高速 光隔可编程数字输入,用 IN 5读取
15	数字量输入6	高速 光隔可编程数字输入,用 IN 6 读取	33	数字量输出 2	光隔可编程数字输出,用 0UT2 读取
16	数字量输出 3	高速 光隔可编程数字输出,用 <i>0UT3</i> 读取	34		保留
17		保留	35	模拟量输入 2-	第二模拟量差分输入负端(±10 VDC)
18*	模拟量输入 2+	第二模拟量差分输入正端(±10 VDC)	36	模拟量输出	参考数字地的模拟量输出 (0-10 VDC)

示例为部分常用编码器的接线图,供参考。

示例 1: 增量式编码器 A/B/Z 带单端霍尔传感器

引脚	双绞线缆	用户电机引脚标记	信号功能描述
1			A+
14	XX		A-
2	जा /के		B+
15	×X 3X		B-
3	जा /के		Z+
16	×X 2X		Z-
4			霍 尔 U
17			霍尔Ⅴ
5			霍尔₩
12	जा क्षेत्र		电机温度传感器
25			电机温度传感器
11			5 伏电源正极
24			5 伏电源负极
26			屏蔽端

注意:如果电机没有温度传感器,引脚12/25请留空。

示例 2: 多摩川省线型增量式编码器

引脚	双绞线缆	用户电机引脚标记	信号功能描述
1	刘体		A+/HALL U+
14	双绞		A-/HALL U-

2		B+/HALL V+
15	秋 纹	B-/HALL V-
3	双绞	Z+/HALL W+
16		Z-/HALL W-
11		5 伏电源正极
24		5 伏电源负极
26		屏蔽端

示例 3: 多摩川(Tagamawa)/尼康(Nikon)绝对式编码器

引脚	双绞线缆	用户电机引脚标记	信号功能描述
1	जा क्र		Serial Data+
14			Serial Data-
11			5 伏电源正极
24			5 伏电源负极
26			屏蔽端

注意:1、编码器备用电池不包含在 GSHD 产品中,如果使用的多圈绝对式编码器,请将电池连接到编码器,并注意电池 正、负极。电池电压须超过 3.6 伏;

2、如果电机有温度传感器,请连接至引脚12/25。

示例 4: 旋转变压器反馈

引脚	双绞线缆	用户电机引脚标记	信号功能描述
6	जग / येद		Sine+
19			Sine-
7	जग / के		Cosine+
20			Cosine-
8	जा क्र		Reference+
21			Reference-
12	ব্যা ধিহ		电机温度传感器
25			电机温度传感器
24			可选:双绞内部屏蔽地
26			电缆屏蔽

注意:如果电机没有温度传感器,引脚12/25请留空。

2.2.6 C3-设备 IO 口

- 所有 GSHD 型号的 C3 接口均为设备 I/0,可按照应用的要求配置输入或输出数字/模拟量。不使用的引脚不 应有任何接线。
- 为了保持数字 I / 0 的隔离,应连接 24 伏正极到引脚 9。连接 24 伏负极 (0 伏) 到引脚 19,形成电源 回路。
- 可连接 C2 或 C3 接口上的任意一组 24 伏正极、24 伏负极,不必同时接入两组 24 伏电源。

图 2.2.6 C3-设备 I/O 外观及引脚序号

引 脚	功能	说明	引 脚	功能	说明
1	第二编码器 A+	第二编码器差分输入信号 A +	11	第二编码器 A-	第二编码器差分输入信号 A -
2	第二编码器 B+	第二编码器差分输入信号 B+	12	第二编码器 B−	第二编码器差分输入信号 B-
3	第二编码器 Z+	第二编码器差分输入信号 Z+	13	第二编码器 Z-	第二编码器差分输入信号 Z-
4	第二编码器电源	第二编码器的 5VDC 电源	14	第二编码器电源地	第二编码器的 5VDC 电源地
5	数字输入7	光隔可编程数字输入,用 IN 7读取	15	数字输入8	等效编码器差分输出信号 B+
6	数字输入 9	光隔可编程数字输入,用 IN 9读取	16	数字输入 10	等效编码器差分输出信号 2+
7	数字输入 11	光隔可编程数字输入,用 IN 11 读取	17	数字输出 4	数字地
8	数字输出 5	光隔可编程数字输出,用 <i>0UT5</i> 读取	18	数字输出 6	模拟量指令差分输入负端(±10 VDC)
9	24 伏正极	AP1/AF1型:外部 24 伏电源正极	19	24 伏负极	AP1/AF1型:外部24伏电源负极
10	故障继电器 1	故障继电器干式触点端子1	20	故障继电器 2	故障继电器干式触点端子2

2.2.7 C4-编码器反馈接口

- 所有 GSHD 型号均可使用电机反馈接口 C4。
- 根据实际应用中使用的反馈装置类型进行电机反馈接口的接线。具体参见下文的引脚出线表。
- 引脚 1、2、14、15 拥有双重功能。电机温度传感器使用的引脚 12、25,已通过驱动器内部连接至 GSHD 的地。 未使用的引脚必须保持不接线。

图 2.2.7 C4-编码器反馈接口外观及引脚序号

引脚	功能	引脚	说明			
	增量编码器 A +	14	増量编码器 A -			
1	SSI 编码器 data +	14	SSI 编码器 data -			
2	增量编码器 B +	15	増量编码器 B −			
2	SSI 编码器 clock +	15	SSI 编码器 clock -			
3	增量编码器 Z +	16	増量编码器 Z -			
4	霍尔 U	17	霍尔 Ⅴ			
5	霍尔 ₩	18	AF1/EC2/PN2 型: 8V 电源正极			
6	旋转变压器 sine +	19	旋转变压器 sine -			
7	旋转变压器 cosine +	20	旋转变压器 cosine -			
8	旋转变压器 reference +	21	旋转变压器 reference -			
9	正弦编码器 sine +	22	正弦编码器 sine -			
10	正弦编码器 cosine +	23	正弦编码器 cosine -			
11	5 伏电源正极	24	5 伏、8 伏电源负极			
12	电机温度传感器	25	电机温度传感器			
13	5V 电源正极	26	屏蔽			

2.2.8 gLink-II 通讯接口

图 2.2.8 总线接口外观

● gLink-II 通讯接口:

1: 准备一条合适长度的千兆网线,将设备的调试网口与电脑网口相连。如果是主轴驱动器,发货会自带一条调试线缆。

2运行"SDT2.0", 点击"新建"选择软件配置类型,点击"增加配置",最后"应用"即可

2.2.9 C8-菊花链接口

- GSHD 可通过菊花链连接的 RS-232 线路进行寻址和控制。
- 在菊花链 RS-232 配置中,所有驱动器必须通过 C8 连接器进行菊花链连接,每个驱动器必须拥有唯一的地址, 以便在网络中进行识别。
- 通过设置驱动器上的旋转开关, 菊花链连接的驱动器可以分配从 1 至 99 中的任一不重复地址。
- 当配置菊花链时,地址 0 不可用。

菊花链接口的外观及接口定义见下图:

图 2.2.10 菊花链接口外观及引脚定义

2.2.10 驱动器地址设定

GSHD 前面板上有两个 10 档位旋转开关,这两个开关用于设定驱动器地址。当菊花链或 CAN 总线网络上有多于一个驱动器时,每个驱动器必须拥有唯一的地址,以便在网络中进行识别。使用这两个旋转开关,设置用于 CAN 和串行通讯的驱动器地址。

- 对于 Ethercat 总线,此开关对驱动器和网络都没有功能性用途,但可以在调试中区分网络上的特定驱动器
- 每个开关有 10 个位置:

A: 上面开关的位置作为十位设定: 10, 20, 30 ··· 90 B: 下面开关的位置作为个位设定: 0, 1, 2 ··· 9

注意:如果两个或更多驱动器连接构成网络,就不能使用地址 0,单一驱动器,则可以使用地址 0。 同一网络中的两个驱动器不能拥有相同的地址。

3.1 软件安装

SDT为GSHD系列伺服驱动器的专用调试软件,使用此软件为您的应用配置驱动器。

- 1: 在 PC 上安装 SDT 调试软件,软件安装包从技术支持处获取;
- 2: 打开安装向导。

系统	-	
🧿 Win7 🔘 Win8-Win10	步骤 1	网络驱动
	步骤 2	Windows图形驱动修复
	步骤 3	SDT伺服专家

图 3.1 安装向导界面

对于第一次安装本软件的 PC,必须按照步骤 1 到 3 的顺序依次安装;对于已经之前已经安装过的 PC,可以只进行步骤 3,但需要在卸载旧版 SDT 伺服专家之后进行安装。

安装过程按照提示进行即可,需要注意的是 SDT 伺服专家的安装路径必须为空。

G SDT Installation Program 设置	
安装文件夹	
Please specify the directory where SDT2.0 will be inst C:\Program Files\SDT2.0	alled. 浏览 (R)
此路径指向的文件夹必须为空	2
	下一步 (M) 取消

图 3.2 安装路径选择界面

3.2 上电

1: 按照第2章的内容,连接好硬件接线,并检查正常后方可为驱动器上电;

2: 接通电源后,会听到风扇的声音及看到数码管常亮或者闪烁,如果不是,请断电检查接线;

3:数码管显示器提供驱动器的各种操作的指示,比如操作模式、驱动器的使能状态、故障情况等,在 遇到驱动器不能正常使用的情况时,应该配合数码管显示的故障代码去查找原因。

3.3 调试步骤

3.3.1 连接

运行"SDT2.0", 点击"新建"选择软件配置类型,点击"增加配置",最后"应用即可。

-🖗 GOOGOLTECH	SDT			[A] SD61_PLUS 轴_
🔗 连接 🛛 🕅	新开 主 新建 📥 导	入 📩 导出 🤣 比较	C 配置 S 保存	⑦ 帮助 ▼
▲ SD61_PLUS				
配置类型说明 "RnNet"目录 "HD1X"之	 : 下 5通用伺服驱动器 GSH	D 系列。"HD1X 3A"头	J 3A 驱动器	
	⊖新建配置对话框			
	设备信息 送择设备	GLink2网络信息: 240 GLink2网络信息:	当前增加项: Device A RnNet A HD1x A HD11_3A V141	
	V141 SD2x SD21 V130 V130	查询网络 增加配置	移験	
				収消

图 3.3 配置界面

软件配置好后,点"连接"连接设备。

- Q GOOGOL TEC	CH S	SDT											示
🔗 连接	3 断开	Ð	新建	* 5	入	合 导:	± ¢	ᅌ比较	C	配置	⑤ 保存	⑦ 帮助	•
		8		A	[0]	M.			B	↔	fft		
⊿ SD42		_	\sim		6.0	11		ت					
⊿ 轴 1			00 F										

3.3.2 查询驱动器版本信息

点击工具栏的"帮助"--->"硬件信息",就可以查看当前的驱动器设备信息。

名称		信息	
▲ 配置	5 信息 1		
4	SDT软件信息		
	系列	HD11_3A	
	SDT版本	V141	
	轴数	1	
	通信方式	RnNet	
4	设备信息		
	软件版本	V141-4	
	固件版本	F81302019051800000000	
	固件日期	2019-0518	

图 3.4 驱动器设备信息

网络连接失败原因排查

● 设备调试网口插错。重新确认设备调试网口;

● 网口接触不良或网线非千兆网线。依次打开"控制面板->网络和 Internet->网络和共享中心", 确认电脑"本地连接"是否连接成功,本地连接状态中网络速度是否是 1.0Gbps。若本地连接断开, 或网络速度不是 1.0Gbps,请换一条网线, 同时也确认电脑网卡是否为千兆网卡;

● 连接之前没有配置软件或者软件配置选择错误;

● 软件安装失败,请联系固高技术支持。

3.3.3 电机参数设置

◆ 如图,在"电机参数"界面输入数值后需按"回车键",数值区域会由白色变成 黄色,而后在软件上方菜单栏点击
⑤保存保存参数,使之存入驱动器 Flash,此 时黄色框底会再次变回白色,最后再重启或复位 DSP 使存入的参数生效,这一点 需特别注意。(填入参数时,也可将此页面所有参数都填入完成后再点击
⑤保存, 然后将其他轴也照此都保存之后再统一重启或者复位 DSP。)

1				
轴_1				
电机参数			14	
加速参数	电流	机械参	数	
电流控制器	额定电流(Arms)	电机转	边惯量(10^−6 kg.n^2)	摩擦系数(10^-3 N.m/(rad/s))
位置控制器	11.800	670.0	00	800.000
制动	峰值电流(Apeak)	惯量比	(%)	极对数
RAN	50,000	0.000		5,000
FLASH				
4 韩 2				
电机参数	[
编码器	速度	阻抗		力矩
功率参数				
电流控制器	额定转速(rpm)	相电阻	(Ohn)	额定转矩 (N.n)
速度控制器	-			
位置控制器	3000.000	0.400		1.200
制动	过速百分比(%)	df由相申	(mH)	扭矩系数(N.n/A)
设备状态				12
RAM	200.000	4.200		0.600
FLASH	是十年志(mmm)	-\$±±8	(既 (~1))	是大由庄(2)
手动松抱闸	₩6.√14/2 (Thu)	44m10+6	223 (atr)	BE CHELL (V)
示波器	5000.000	4.200		150.000
			 =	▶ × 更多 、
		固件更新	固件管理	•
		复位DSP	选项	
			软件运行模式	•

图 3.5 电机参数设置界面

参数说明:

- **额定电流:** 电机额定电流(Rated Current / I_R),单位为A(rms,有效值),一般电机
 手册所给 I_R多为有效值A(rms),直接填入;
- 2) 峰值电流: 电机瞬时最大电流(Peak Current / Instantaneous Maximum Current / I_p), 单位为 A(peak,峰值),一般电机手册所给的 I_p多为有效值 A(rms),此处填峰值,即 将有效值乘√2 填入;如果电机手册未给出,可按照额定电流 3 倍填入,即 I_R×3×√2;
- 3) 额定转速: 电机额定转速(Rated Speed / N_R),单位为 rpm,按照电机手册直接填入;
- 4) 最大转速: 电机最大转速(Maximum Speed / N_{MAX}),单位为 rpm,按照电机手册直接填入;
- 5) **过速百分比:** 电机过速报警阀值,此阀值=过速百分比× N_R ,阀值大小用户可根据具体应用情况来设定,一般情况,阀值为1.1 倍 N_{MAX} ,故过速百分比= $\frac{1.1 \times N_{MAX}}{N_R} \times 100\%$
- 6) 电机转动惯量: 电机转动惯量(Rotor Moment Of Inertia / J_M), 单位为 10⁻⁶ kg m², 不同厂家电机手册给出的 J_M 单位不一样,填入时注意单位转换;
- 7) 惯量比:负载惯量与电机惯量之比,由机械特性决定,一般在机械设计时已给出,如

果没有,则需要在调试过程中确定;

- 相电阻: 电机相间电阻(R_o),单位为Ω,电机手册一般会有三种电阻值,等效直流电阻R_a,绕线/线间电阻R_{L-L},相间电阻R_ø,三者关系为R_a = 1.5×R_{L-L} = 3×R_ø,填入时需要注意手册上给出的电阻值含义;
- 9) d轴、q轴相电感: 电机相间电感(L_o),单位为mH,与电阻类似,有等效直流电感L_a, 绕线/线间电感L_{L-L},相间电感L_ø,三者关系为L_a = 1.5×L_{L-L} = 3×L_ø,对于表贴式 永磁同步电机,d轴和q轴电感相等;

10) 摩擦系数: 保留

- 11) 极对数: 电机磁极数除 2 填入;
- 12) **额定转矩**: 电机额定转矩(Rated Torque / T_R), 单位为 N•m, 按照电机手册直接填入;
- 13) 扭矩系数: 电机扭矩系数(Torque Constant/K_τ),单位为N•m/A,按照电机手册直接 填入;

14) 最大电压: <u>保留</u>

提示:若电机厂商没有给出相电阻、相电感,则可参考同功率的其他家电机(如多摩川), 将其相电阻,相电感填入。

编码器反馈

在运行电机之前,要先确保编码器的反馈是否正常。在导航树中切换到编码器界面。

图 3.6 编码器界面

转动一下电机,可以观察到界面上的指针会跟着转动。如果电机处于抱闸状态无法转动,可-27-

以使用软件的 I0 界面打开抱闸。

2 接 図 10 10 10 10 10 10 10 10 10 10 10 10 10	GOOGOLTECH SDT	N 1 - A		SD61_PLUS IO			– @ ×
9 501-FU: <	🥙 连接 🧼 断开 🕒	🖞 新建 👛 导入 👗 导出	🕫 比较 C 配置 S 保	存 (?) 帮助 🔻			三 更多↓
 ▲ 10.1 正式 ● 10.1 正式 ● 10.1 正式 ● 10.2 正式 ● 10.2 世机炮闸股性 ● 10.2 世机炮闸股性 ● 10.4 1 ● 10.4 1 ● 10.4 1 ● 10.2 10 ● 10.2 10 ● 10.2 10 ● 10.2 10 ● 10.4 10 ●	8						
• 抽:1 ● 印参数 • 時記参数 ● 時記 • 時記 ● 前記 • 時記 ● 前記 • 補2 前3 • 補2 ● • 補3 ● • 補2 ● • 補3 ● • 補4 拍5 • 補5 ● • 補5 ● • 補5 ● • ● ● • ● ● • ● ● • ● ● • ● ●	SD61_PLUS						
 中初参数 中初会 功本参数 市水法 市 	▲ 轴_1						
	电机参数						
 助本技材器 速度技材器 速度技制器 逆音状态 ● 14.3 ● 14.3 ● 14.4 ● 14.4 ● 14.5 ● 14.5<	编码器						
 転式2期器 通数初 少会状态 14.2 14.3 14.4 14.5 <l< td=""><td>功率参数</td><td></td><td></td><td></td><td></td><td></td><td></td></l<>	功率参数						
這想控制器 例功 设备状态 9 轴2 9 → 100	电流控制器						
1 1	速度控制器						
地口 电机饱闸放性 电机饱用放性 电机饱用放性 电机饱用放性 电机饱用放性 电机饱用放性 电机饱用放性 电机饱用放性 电机饱用放作 化态 和	位置控制器						
设置状态 电机油闸放性 电机油闸放th 电机油闸动th 电机油闸动th 电机油 印油 油	制动						
● 抽2 中日の日中秋11 中日の日中の11 中日の11 中日の11 中日の11 中日の11 中日の11 中日の11 中日の11 中日の11 中日の11 <th< td=""><td>设备状态</td><td>由101版词1234</td><td>由和物理和外</td><td>由扣协词扣补</td><td>由加坡调控冲</td><td>由扣协词把补</td><td>中和按调机性</td></th<>	设备状态	由101版词1234	由和物理和外	由扣协词扣补	由加坡调控冲	由扣协词把补	中和按调机性
• 袖_3 轴1 轴2 轴3 轴4 轴6 轴6 • 袖2 • 袖3 袖4 轴6 轴6 • 袖2 • 袖3 • 袖4 轴6 • 袖6 • 袖2 • ▲2 • ▲2 • ▲2 • ▲2 • 袖2 • ▲2 • ▲2 • ▲2 • ▲2 • 袖2 • ▲2 • ▲2 • ▲2 • ▲2 • 袖2 • ▲2 • ▲2 • ▲2 • ▲2 • ▲2 • ▲2 • ▲2 • ▲2 • ▲2 • ▲3 • ▲3 • ▲3 • ▲4 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ▲4 • ▲3 • ▲3 • ▲3 • ▲3 • ▲3 • ● • ▲3 • ▲3 • ▲3 • ▲3	▶ <u>租_2</u> ▶ th o	电机机器种规制	电位时间的	电加强性的和	电位时间和	电机过程中加速注	电初记时间双注
• 福4.5 • 福4.5 • • • • • • • • • • • • • • • • • • •	P 7田_3 	转由1	轴2	轴3	轴4	轴5	轴6
• 福.3 • 福.3 • 福.3 • 福.3 • • 福.5 • • • • • • • • • • • • • • • • • • •	P 7曲_4						
IO IO IO 状态: 抱骨锁紧 状态: 抱骨锁紧 状态: 抱骨锁紧 状态: 抱骨锁紧 状态: 抱骨锁紧	P 200_0 、 約 の						
成本: 抱用前菜 状态: 泡用前菜 状态: 泡用 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 流 流 流 流 流 流 流 流 流 </td <td>70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	70						
		状态: 抱闸锁紧	状态: 抱闸锁紧	状态: 抱闸锁紧	状态: 抱闸锁紧	状态: 抱闸锁紧	状态: 抱闸锁紧
	11/0(68						
	-						20

图 3.7 IO 界面

勾选与取消勾选电机各个轴对应的勾选框,就可以在抱闸打开和关闭的状态间来回切换。需 要注意的是,测试完成后,必须还原抱闸的初始状态。

3.3.4 驱动调试

图 3.8 伺服电机带载试运行调试步骤

伺服参数配置确认无误且无报警,可进行试跑电机,如仍有报警,请参照 XXX 错误代码, 处理报警。初次适配电机,请严格按照下述步骤进行。

1) 切换控制源

驱动器的控制来源有三种: PC、Glink2、IO。调试时需将控制源切换到"PC"端,即允许 调试软件"SDT"控制电机运动。如图,选中所有轴,将控制源切换到"PC"。(每次上电或 者复位 DSP 后,控制源会自动恢复成默认控制源,默认控制源可通过参数配置选择)

图 3.9 控制源切换界面

2) 添加监测曲线

调试过程中需要结合相应曲线进行分析和判断,如图,在"示波器"页面中,点击"添加",在"曲线选择"对话框中,列出了常用的13条曲线,双击曲线名称即可将曲线添加到监测曲线列表,"轴选择"可切换到其他轴的曲线,每条曲线的单位用户可根据需求自行配置。 在专家列表中还有其他曲线,使用率不高,具体应用场景再做说明。

- GOOGOLTECH SDT		_			<u>7</u>	、波器				_			1	
🔗 连接 🔗 断开 [🖞 新建 📥 导入 👗 导出	¢)	比较 🖸 配置	S 保存	② 帮助 👻									☰更多↓
6		t− F		661						67	亚样 国 間	B(62 5ug X).		1 -
▲ SD61_MINI		0	曲线洗择					2 💌		КЛ			-1	-
▲ 轴_1	5 F		The second se								显2	г Ä	杯	钿
电机参数		轴	先择 = ===_1	轴_2	轴_3	釉_4	箱_5	釉_6			1 廾	Vel(rpm)	1
编码器	4		名称		注释		单	()			2 开	Iu(mA)	1
功率参数	-	1	Pos		位罟反	浩	nulse	-			а II	Twf		1
电流控制器			-	-		lin art	puise							
速度控制器	Ē	2	Perr		包面控制	偏左	pulse	*			4 升	Iw(mA)	1
位置控制器		3	Vffd		位置速度	指令	rpm	~						
同切	2	4	Vend		目标速	度	rpm	-						
RAM		5	Vfb		反法演	ė								
FLASH	1 [110	-		1×.	Thu							
▶ 轴 2		6	Vel		测重速	度	rpm	~						
▷ 轴_3	o <u>t</u>	7	Icmd		目标电	流	лA	*						
▷ 韩由_4		8	Ifb		反馈电	流	mA	*		5				
▷ 轴_5	AY空你: A=5051.84 ms I=1.	a	Tu		「「林日由ふ	ġ.	ná	-						
▷ 轴_6	模式 运动		-		with the	*	max				_			
手动松抱闸		10	Iv		V相电〉	觉	mA	~						
不波器		11	Iw		w相电》	斎	nA	*						
	1 11-2 0空闲	12	Tq		力矩		N. m	-	伺服	¥				
	● 轴_3 0空闲	13	Trate		力矩变化	と 率	%	-						
	□ 轴 4 0空闲													
					Ω		Ω					m		
	│		用户		专家		定	1			TextLab	el		
	<u> 轴_6 0</u> 空闲	-						405 - 11. 			 ✓ 全选 	①	○ 移除	山 清空
														20

图 3.10 检测曲线选择界面

3) ADC 校正

添加"U相电流"、"V相电流"、"W相电流"曲线以及"测量速度"曲线,点击左上 角 按钮,开始采集曲线,再点击 使曲线自适应界面大小;在"模式"一栏,将需要调 试的轴(如1轴)控制模式切换到"ADC校正",然后点击伺服按钮上伺服(如果调试多关节 机械臂,则在上伺服之前需有人配合托住当前调试轴,以防机械臂松抱闸时下坠)。正常情况下,此 时如果电机带抱闸,会听到抱闸动作的声音,人为转动电机或者推动相应机械臂,如图,会采 集到三相交流曲线,每相相位相差120°,测量速度非零,且曲线连续变化。

此步骤主要用于确认动力线缆及编码器线缆连接是否正确,轴号对应是否有误。

图 3.11 检测曲线选择界面

4) 电流闭环调试

在不清楚电机相电阻,相电感时,请执行此调试步骤,以修整电流环路参数,其他时候视 情况而定,通常可不做。

在"专家"栏中,添加"id"和"id_ref"曲线,如图。将机械臂人为移动到一个不受重 力影响的位置(可用 ADC 校正模式或调试软件手动松抱闸功能将轴移动到合适位置),即当松开电 机抱闸时,机械臂不会因自身重力影响而转动。

轴选择:	轩	<u>‡_</u> 1	轴_2	轴_3		轴_4
关键词:					搜索	取消
memberNam	е			memberTy	pe	
	Þg	SevDrv.sev	_obj.cur.rsv	RESV_ENC		
	⊳g	SevDrv. sev	_obj.cur.drv	DRV_PWM		
	⊳g	SevDrv.sev	_obj.cur.pro	DRV_PROC		
	Þg	SevDrv.sev	_obj.cur.pwr	PWR_MAG		1
	Þg	SevDrv. sev	_obj.cur.lpf	IDQ_FIT		
	⊿ g	SevDrv.sev	_obj.cur.ctl	CURR_CTL		
	1	gSevDrv.	sev_obj.cur.ctl.prm	CURR_CTL	_PRM	
		gSevDrv.	sev_obj.cur.ctl.id	int16		
		gSevDrv.	sev_obj.cur.ctl.iq	int16		
		gSevDrv.	sev_obj.cur.ctl.id_ref	int16		
		gSevDrv.	sev_obj.cur.ctl.iq_ref	int16		
		gSevDrv.	sev_obj.cur.ctl.ud	int16		
		gSevDrv.	sev_obj.cur.ctl.uq	int16		
		gSevDrv.	sev_obj.cur.ctl.id_s	int32		
		gSevDrv.	sev_obj.cur.ctl.iq_s	int32		
		gSevDrv.	sev_obj.cur.ctl.idi_s	int32		
		gSevDrv.	sev_obj.cur.ctl.iqi_s	int32		
	0	····	- <u> </u>	DO TOAS	0	

图 3.12 电流环闭环调试界面

将当前调试轴的模式切换为"电流闭环模式", id_ref 输入 5 然后回车, 打开画图开关, 开始采集曲线, 点击伺服开关上伺服, 而后马上再点一次伺服开关下伺服, 此时示波器会采集 到一个方波, 分别采集 id_ref 分别为 5、10、20、30 时的电流曲线, 如图可以看出, 随着 id_ref 指令电流加大, 反馈电流震荡越来越严重, 电流环响应太快, 此时, 可适当降低电流控制器增 益系数, 增大积分常数。如图, 调整后的电流曲线。若曲线如图, 电流环响应太慢, 则适当增 加电流控制器增益系数, 减小积分常数

5) 初始相位校正(寻相)

如图,在编码器页面设置"寻相力度百分比"(默认 5%),然后点击"寻相",此时电 机有小幅度摆动,观察电气角码盘指针摆动情况,若指针在某一个位置左右摆动大约 90°, 并最后停在此位置,说明寻相成功;若指针摆动无规律,则加大寻相力度(每次增加 1%)再 进行寻相操作。寻相成功之后,最后点击"保存相位"即可。

提示:如果电机带有负载(如带着机械臂),则在寻相之前,需将机械臂人为移动到一个 不受重力影响的位置(可用 ADC 校正模式或调试软件手动松抱闸功能将轴移动到合适位置),即当 松开电机抱闸时,机械臂不会因自身重力影响而转动,否则将影响寻相准确性,同时也可能损 伤机械设备。

6) 电压开环调试

添加"U相电流"、"V相电流"、"W相电流"曲线以及"测量速度"曲线,并开始采 集曲线,将当前调试轴的控制模式切换到"电压开环调试", $u_{q,ref}$ 输入5回车,然后点击伺服 开关上伺服。正常情况,上伺服后电机缓慢转动,曲线如图,为趋近于三相正弦交流曲线。若 电机不动,曲线如图,则加大 $u_{q,ref}$ 的电压值,再上伺服。 $u_{q,ref}$ 每次加1,直至电机开始运转。 如 $u_{q,ref}$ 加到10电机仍无法运转,请检查当前轴参数中极对数是否正确。 $u_{q,ref}$ 输入负值,则电 机返向运转,方式与前文相同。(试运行电机时需特别留意机械限位,不能持续上伺服,以防撞限 位。)

电压开环调试电机运动慢,安全性高,主要用于确认相位是否正确,以防在速度环调试时 因为相位不对而飞车。

7) 速度闭环调试

添加"目标速度"、"反馈速度"、"目标电流"、"反馈电流"曲线,并开始采集曲线, 在"运动"模式下将当前调试轴选择为"速度模式",勾选"周期循环",此功能主要针对于 有机械限位的场合,让电机往复运动,保证机械安全。设置"幅值"、"周期"、"循环次数", 一般可直接采用默认值,点击"伺服开关"上伺服,再点击"开始运动",正常情况,电机会 开始周期性往复运动,各项曲线如图。若出现电机高频鸣叫,曲线震荡,则降低速度环增益(设 置方法参照前文 2.3 节);若增益降低至 10 左右仍无法改善,则请检查电机参数页面中相电 阻、相电感、扭矩系数等参数设置是否有误。

8) 位置闭环调试

添加"位置速度指令"、"反馈速度"、"目标电流"、"反馈电流"、"位置控制偏差" 曲线,并开始采集曲线,在"运动"模式下将当前调试轴选择为"位置模式",勾选"周期循 环",此功能主要针对于有机械限位的场合,让电机往复运动,保证机械安全。设置合适的"加 速度"、"减速度"、"最大速度"、"圈数"、"时间间隔"等参数;

点击"伺服开关"上伺服,再点击"开始运动",正常情况,电机会开始周期性往复运动, 各项曲线如图。逐渐增大位置环增益,使位置环误差达到指定的范围,若出现电机振动或者啸 叫,曲线震荡,则需要降低位置环增益。

9) 惯量辨识

与前文一样,先将机械臂人为移动到一个不受重力影响的位置,然后点击伺服开关上伺服, 电机运动结束后,再次点击伺服开关下伺服。此步骤主要目的是识别机械惯量,识别后的值保 存在 flash 参数值中。

在示波图界面,将"轴1-模式"设置为"13-自整定",将最大速度和周期设置为合适的 值,点击伺服开,伺服将往复动作一次。

模式 运动 用户模式		
	最大速度(rpm): 200	伺服关
☑ 抽.113自整定 ▼	周期(ms): 200 转动惯量(10 ^{~-0.kg.m[*]2):5}	
	转动惯量 (10 ^{~-0} .kg.m [*] 2): 5	

在路径: RAM-gSevDrv.sev_obj.vel.atn.jrate 读取惯量识别的数据,将其写入点击参数的惯量值中。

保存惯量值后,可以在 DSP 复位后再次执行步骤 7、8,进而提高驱动器的控制精度。

3.4 控制模式设定

GSHD 伺服驱动器控制模式的设定,在"示波器"一栏中选择合适控制源和用户模式进行测试或者控制;

设置界面如下所示:

图 3.4.2 "用户模式"设置

1、选择对应站号设备, GlinkII 支持多台驱动器同时连接, 注意站号切换;

2、选择控制源和用户模式;

PC: 主要用于调试软件端的调试,可用模拟速度模式和位置脉冲模式;

Glink2:使用总线模式,对应用户模式为"周期同步位置"和"周期同步速度";

IO: 用于脉冲模式和模拟量模式;

参数设置完毕需要点击"示波图-用户模式-保存模式",如图 3.1.2 右下角所示,才可以保存完毕模式。

3、位置模式下当量设置;

位置模式需要设置当量,单位为脉冲/圈或脉冲/节距,设置路径如下图所示。

♂ 连接 22 断开 📩	」 毎日入 二日 导出 ◆プ 比技 回 配置	⑤保存 ⑦帮助 ▼			
 ② ② ③ ③ ③ ○ ④ ① ① ① ○ ○<th>3年93日2月 4823年9月 1827年1月3日 1827年1月3日</th><th>2 mm</th><th>寻相力度百分比: 实型 ④ 线数 线数:</th><th>10 ① 位数 10000</th><th>寻相 保存相位 編55000 尋相方式: 優達慎式 ~ 確存回席位置 0 意思機能式 編出跡中 取反 強力所率: 10000 Indes機式: 毎時輸出一个index 输入防冲: 10000 加減力 一 強人脉冲 ~ 输入分辨率: 10000</th>	3年93日2月 4823年9月 1827年1月3日 1827年1月3日	2 mm	寻相力度百分比: 实型 ④ 线数 线数:	10 ① 位数 10000	寻相 保存相位 編55000 尋相方式: 優達慎式 ~ 確存回席位置 0 意思機能式 編出跡中 取反 強力所率: 10000 Indes機式: 毎時輸出一个index 输入防冲: 10000 加減力 一 強人脉冲 ~ 输入分辨率: 10000

输入脉冲类型:可以设置为脉冲型指令、AB脉冲型、正负脉冲型,默认为"AB脉冲"模式;

3.4.1 GLink2 总线位置模式设定

首先在示波器-轴1(对应轴即可)-运动,设置控制源为GLink2,在"用户模式"界面设置为"1-周期同步位置",然后点击"保存模式"保存。如下图所示。

模式 运动 用户模式	
抽_1 控制源 PC GLink2 IO	
\rightarrow	THINK .

另外,需要设置脉冲当量。

3.4.2 位置脉冲模式设定

首先在示波器-轴1(对应轴即可)-运动,设置控制源为IO,在"用户模式"界面设置为"4-方向脉冲",然后点击"保存模式"保存。如下图所示。

脉冲模式还需要额外设置一个 IO 的功能模式。

IO 模式下默认为模拟量速度模式,如果使用脉冲模式,需要在数字 IO 处选择"4-模式切换",并保持 该 input 常通(给电平信号或者直接取反置 1);

🔗 连接 🔗 断开 📥 🦷	💫 📩 导出 🔗 比较 🖸] 配置 15 保存 (?) 帮助 •	~	
P				
[240] GSHD11_3A	输入			
✔ 轴_1				
电机参数		1 1/200		
编码器	1111/1	1 上伺服	* 联友	C_3
功率参数		2 各唐	The second secon	0.00
电流环	AHRVT	2 志行	* 4X/X	C_20
速度环	▲ 特金 λ 2	3、満招塾	- 105	C 31
位置环	HED Co			0_01
制动	(二) 输入3	4 模式切换	- 🗸 🖬	C 14
数字量10	102/ 10	- 01249307		
模拟量IO	● 输入4	5 准停	- 🗌 取反	C_32_F
回零	•			
设备状态	🖌 输入5	6 回零	- 🗌 取反	C_15_F
RAM	0			
FLASH	₩ 输入6	7 正限位开关	▼ 取反	M_5
手动松抱闸	Ō		_	
示波器	₩ 输入7	8 负限位开关	-	M_15
	● 输入8	9 回零开关	- 取反	M_6

图 3.4.3 脉冲模式 IO 设置

另外,需要设置脉冲当量和脉冲类型。

3.4.3 模拟量速度模式设定

首先在示波器-轴1(对应轴即可)-运动,设置控制源为IO,在"用户模式"界面设置为"3-模拟量速度",然后点击"保存模式"保存。如下图所示。

模式 运动 用户模式 1 拉刮源 PC GLink2 IO		
\rightarrow	(85)	定義

设置电压信号的当量设置,单位 rpm/V。

6	连接	<i>℃</i> 断开	📥 导入	🔒 导出	🖨 比较	こ配置	S 保存	⑦ 帮助 👻						
			8											
~	[240] G	SHD11_3A		输入										
	♥ 轴	1												
		电机参数												
		编码器												
		功率参数												
		电流环												
		速度环												
		位置环							伯罟(17)	由正徒供		当前由圧(3)	50.00 L ==	
		制动						1個人信号		 GZETVIC			输出电压	
		数字量10						10 C	0.00	17 = 500.00	rpm	0.00		
		回零	_											
		设备状态												
	手ź	动松抱闸												
	示波器													

3.5 固件升级

GSHD 伺服驱动器会不定期更新固件,用于新增产品功能,和提升产品性能。

驱动器出厂前会下载稳定版本固件,请放心使用;如需固件升级,请联系固高伺创技术支持工程师获 取最新固件程序,并根据指导进行升级。

固件下载升级步骤如下:

1、驱动器上电,打开 DriveStudio 软件并切换进入在线模式;

2、菜单栏路径"更多-固件管理-固件更新",点击"固件更新";

🥜 连接 🖉 断开 👌	\$1号入 📩 导出 🗢 比较 C 配篮 S 保存 ⑦ 帮助 ▼			(更多),
8			固件更新	圖件管理 →
✓ [240] GSHD11_3A	电机类型		复位DSP	选项
● ##1	 			高级用户选项
编码器				模板参数恢复
	电流	机械参数		
制动 数字量10 模拟量10	额定电液(Arns)		摩擦系数(10 [^] -3 N.m/(rad/s))	
回零 设备状态	1.700	28,000	400.000	
RAN FLASH 手动松物画	峰值电流(Apeak)	惯量比(%)	极对数	
示波器	7.000	50.000	4.000	

图 3-5-1 更多选项界面

3、进入到"固件烧写"界面之后,选择固件存储路径,选择需要烧写的固件;

∂ 国件烧写							
选择设备: 		烧写	摩擦系数(10"-3 N.m/(ra	i/s))		
	打开文件						x
	GG - 4 6SHD20	190827	_		▼ 49 / 搜索(3SHD20190827	\$
[240] GTHD11_3A	组织 ▼ 新建文件夹					III 🕶 E	1 0
	☆ 收蔵夹	名称	修改日期	类型	大小		
	🚺 下载	GTHD11_3A-V141-17-FPGA20190827	2019/8/27 12:04	SDT 文件	777 KB		
	● 桌面 桌形访问的位置 ● OneDrive ○ 序 ● 現現 ● 図片 ● 文档 ● 首乐 ●						
	文件名	(<u>N</u>): GTHD11_3A-V141-17-FPGA20190827.sdt			▼ SDT文作 打开(C	‡(*.sdt) D) ▼ 取	▼ 消

图 3-5-2 固件烧写界面

4、勾选需要烧写的设备,如果所有驱动器都要烧录同一个固件可以点击全选,然后点击"烧写"。 (注:如果不需要驱动器原有的参数可以不用勾选选择 Xm1)

 ○ 固件烧写 选择设备: ◇ 全洗 	□□■×
✓ [240] GTHD11_3A	 ✓ Hex DSP固件 ✓ Xml 配置文件 ✓ Rpd或Bin FPGA固件;如烧写失败,请勿关闭设备电源
DSP版本: 141 DSP备注: FPGA版本: F813000000000 FPGA备注:	

图 3-5-3 设备选择界面

4) 烧写成功之后会有烧写成功的提示。(注意:烧写成功之后记得断电重启一下)

○ 固件烧写		
选择设备: ✓ 全选	3THD11_3A-V141-17-FPGA20190827.sdt	烧写
✓ [240] GTHD11_3A	 ✓ Hex DSP固件 ✓ Xml 配置文件 ✓ Kpd或Bin FFGA固件;如烧写失败,请勿关闭设 	≧备电源
DSP版本: 141 DSP备注: FPGA版本: F81300000000 FPGA备注: 设备[240]: 1. 正在检查版本! 设备[240]: 2. 正在烧写DSP固件! 正在烧写DSP1。 设备[240]: 3. 正在烧写FPGA固件 FPGA翻涂中 FPG43入中 FPG43入中 设备[240]: 4. 正在烧写参数模板 设备[240]: 烧写成功!		
屋り	F 4 戊字式计用声	

图 3-5-4 烧写成功界面

故障诊断 4

4.1

LED 显示及故障诊断与处理

显示文本	定义	类型	注释
0	IDLE	模式	准备状态,未使能无故障
1	ADC	模式	ADC 校正
2	Motor Phase Identify	模式	电机相位识别
3	Machine Identify	模式	机械模型辨识
4	Voltage OMode	模式	电压开环模式
5	Current CMode	模式	电流闭环模式
6	Velocity CMode	模式	速度闭环模式
7	Position CMode	模式	位置闭环模式
EO	0C	故障	UVW 输出过流
E1	0 v	故障	母线过电压
E 2	UV	故障	母线欠电压
E3	BRKPH	故障	RST 输入缺相
E4	RESERR	故障	编码器故障
E5	OL	故障	UVW 输出过载
E6	ОТ	故障	驱动器过温
E 7	IOERR	故障	IO 错误
E8	REG	故障	再生电阻故障
E 9	PS	故障	功率模块 故障
FO	05	故障	电机过速
F1	OPRE	故障	过压
F2	DIR	故障	运动方向错误
F3	SOC	故障	驱动器瞬时过流
F4	Оврн	故障	电流跟随异常
F5	OT_MOT	故障	电机过温
F6	PTE	故障	位置跟随误差超限
F7	STO	故障	STO 故障
F8	OB_ERR	故障	输出抱闸故障
F9	FAN	故障	风扇故障
LO	SRF	故障	安全继电器故障
L1	0 BP	故障	输出抱闸电源故障
L2	NET	故障	总线通信异常
L3	VTE	故障	速度跟随误差超限

以下为 GSHD 驱动器 LED 显示代码,多位代码会滚动显示。

L4	Мрна	故障	电机寻相错误
L5	HOME	故障	回零错误

可根据故障代码做对应的故障排除,下面是具体的故障排除方法

表 4- 1 过流

报警名称	伺服过流
类型	故障
伺服关闭	是
可能原因描述	 1. 负载过大 2. 电机输出侧发生短路、接地 3. 电机额定电流参数设置错误
应对措施	1. 减小系统负载 2. 检查驱动器输出接线是否有短路、接地 3. 检查电机额定参数是否满足系统要求

表 4- 2 过压

报警名称	伺服过压	
类型	故障	
伺服关闭	是	
可能原因描述	1.输入电源电压过高 2.电机减速时间太短,再生能量过大 3.刹车电阻容量不足	
应对措施	1.检查输入电源是否正常 2.减小速度指令斜坡 3.检查刹车电阻是否正常连接,电阻阻值、容量是否合适	

表 4-3 欠压

报警名称	伺服欠压
类型	故障
伺服关闭	是
可能原因描述	 1. 输入电源电压过低 2. 瞬时负载过重 3. 驱控一体机输入侧连线有误
应对措施	1.检查两相AC电源输入电压是否正常 2.检测驱控一体机输入侧连线是否完好

表 4-4 输入缺相

报警名称	伺服输入断线
类型	故障
伺服关闭	是
可能原因描述	1.驱控一体机输入侧电源接线松动 2.AC电源输入缺相或电压波动过大 3.AC电源断开
应对措施	 1.检查驱动器AC电源输入侧接线是否完好 2.检测AC电源电压是否正常 3.系统配电是否正常

表 4- 5 编码器故障

报警名称	。 1993年1月1日日前1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日
类型	故障
伺服关闭	是
可能原因描述	 1. 编码器信号接线松动 2. 编码器屏蔽接地线未连接 3. 编码器信号处理电路异常
应对措施	 1.检查编码器信号接线是否完好 2.检查编码器接地线是否完好 3.检查系统布局、布线,减少线路耦合干扰信号的引入

表 4-6 过载

报警名称	伺服过载
类型	故障
伺服关闭	是
可能原因描述	 系统负载过大 驱动一体机电机输出侧发生短路、接地 电机额定电流参数设置错误
应对措施	 减小系统负载 检查驱动一体机输出接线是否有短路、接地 检查电机额定参数是否满足系统要求

表 4-7 过热

报警名称	伺服过温
类型	故障
伺服关闭	是
可能原因描述	 1. 驱动IPM模块过热 2. 电机过热 3. 驱控一体机整流桥过热
应对措施	 1.检查系统负载是否过大 2.检查驱动器、电机容量是否足够 3.检查系统散热环境、风扇工作是否正常

表 4-8 功率模块故障

报警名称	伺服功率模块出错
类型	故障
伺服关闭	是
可能原因描述	1. IPM损坏 2. 系统干扰
应对措施	联系技术支持

表 4- 9 过速

报警名称	伺服电机超速
类型	故障
伺服关闭	是
可能原因描述	 1. 电机速度过高 2. 编码器信号异常 3. 电机额定转速参数设置错误 4. 速度响应超调过大 5. 电机转子初始位置校正不准确
应对措施	 1.检查旋转编码器接线是否完好 2.检查系统参数和速度指令设置是否合适 3.检查电机额定转速参数是否满足系统要求

表 4- 10 瞬时过流

报警名称	伺服电机瞬时电流过大
类型	故障
伺服关闭	是
可能原因描述	 系统瞬时负载过大 驱动器输出侧发生短路、接地 过流检测电路受到干扰
应对措施	 1.检查系统负载是否正常 2.检查驱动器输出侧连线是否完好 3.检查系统布局布线、减小干扰信号引入

表 4- 11 输出缺相

报警名称	驱动器输出断线
类型	故障
伺服关闭	是
可能原因描述	驱动器输出侧连线异常
应对措施	检查驱动器输出侧接线是否完好

另外,如果你鼠标移动到具体的位置上面都会有故障的原因和处理方式,如下图所示

附件

5.1 附录一再生电阻选型

再生电阻的阻值 (Ohms, Ω)由 GSHD 伺服驱动器决定,具体所需功率由客户根据实际应用 决定,每个驱动器可能有多个再生电阻选项;

	GSHD-0032AGL2	GSHD-4D52AGL2	GSHD-0202AGL2
		GSHD-0062AGL2	GSHD-0242AGL2
		GSHD-0082AGL2	
		GSHD-0102AGL2	
		GSHD-0132AGL2	
功率(W)	电阻 100Ω	电阻 33Ω	电阻 15Ω
150	\checkmark	${\bf \boxtimes}$	\checkmark
300	\checkmark	\square	\square
600	$\mathbf{\overline{M}}$	${\bf \boxtimes}$	V
1000		${\bf \nabla}$	$\overline{\mathbf{A}}$
2000		${\bf \boxtimes}$	$\mathbf{\overline{M}}$
3000		${\bf \boxtimes}$	Ø
4000			\checkmark